MBR8150FCT - MBR8200FCT

8.0A HIGH VOLTAGE DUAL SCHOTTKY BARRIER RECTIFIER

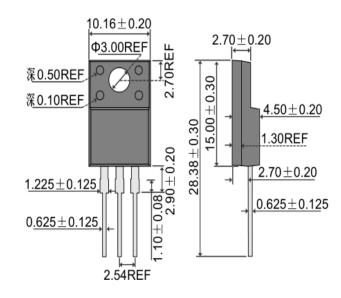
Features

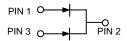
- Power Schottky Barrier Chip
- Guard Ring for Transient Protection
- Low Forward Voltage Drop
- Low Power Loss, High Efficiency
- High Surge Current Capability
- Epoxy Meets UL 94V-0 Classification
- Ideally Suited for Use in High Frequency SMPS, Inverters and As Free Wheeling Diodes

Mechanical Data

Case: ITO-220, Full Molded Plastic
Terminals: Plated Leads Solderable per

MIL-STD-202, Method 208 Polarity: See Diagram

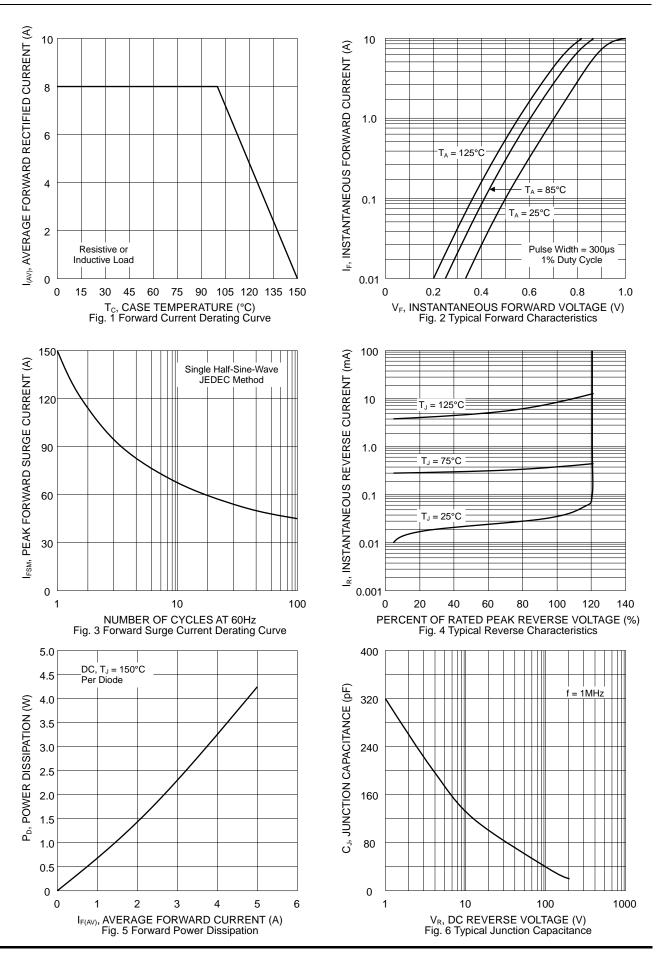

• Weight: 1.9 grams (approx.)


Mounting Position: Any

Mounting Torque: 0.6 N.m Max.

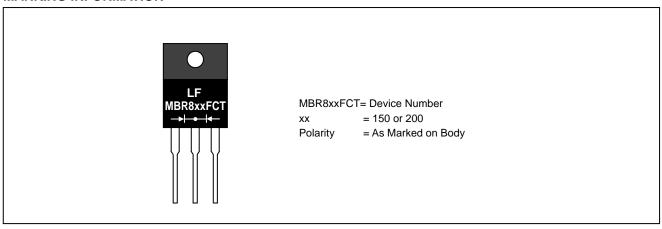
Lead Free: For RoHS / Lead Free Version,

ITO-220AB


Maximum Ratings and Electrical Characteristics @TA=25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	MBR8150FCT	MBR8200FCT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	150	200	V
RMS Reverse Voltage	VR(RMS)	105	140	V
Average Rectified Output Current Total Device @T _C = 100°C Per Diode	lo	8.0 4.0		А
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method)	Ігѕм	150		А
Forward Voltage per diode @I _F = 4.0A	VFM	0	٧	
Peak Reverse Current $@T_J = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_J = 100^{\circ}C$	Irm	0.2 10		mA
Typical Junction Capacitance (Note 1)	Cı	200		pF
Thermal Resistance Junction to Ambient per diode Thermal Resistance Junction to Case per diode	R JA R JC	62 4.5		°C/W
RMS Isolation Voltage Terminals to Case, t = 1 min	Viso	1500		٧
Operating and Storage Temperature Range	TJ, TSTG	-55 to +150		°C


Note: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.

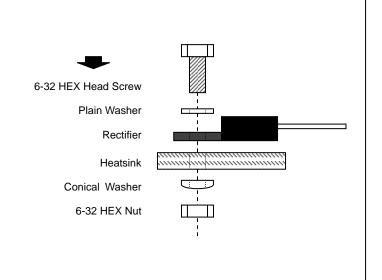
MBR8150FCT - MBR8200FCT

MBR8150FCT - MBR8200FCT

MARKING INFORMATION

PACKAGING INFORMATION

BULK


Tube Size	Quantity	Inner Box Size	Quantity	Carton Size	Quantity	Approx. Gross Weight (KG)
L x W x H (mm)	(PCS)	L x W x H (mm)	(PCS)	L x W x H (mm)	(PCS)	
525 x 31 x 6	50	558 x 150 x 40	1,000	570 x 235 x 170	5,000	11.85

RECOMMENDED SCREW MOUNTING ARRANGEMENT

The full molded plastic package affords a major reduction of hardware as compared to a standard TO-220 package. However, precautions should be made in mounting procedure.

A conical washer should be used to apply proper force to the device. Screw should not be tightened with any type of air-forced torque or equipment that may cause crack on device package.

A layer of thermal grease or thermal pad in the interface will be considerably helpful for heat dissipation.

